On scalar products in higher rank quantum separation of variables
نویسندگان
چکیده
منابع مشابه
On higher rank numerical hulls of normal matrices
In this paper, some algebraic and geometrical properties of the rank$-k$ numerical hulls of normal matrices are investigated. A characterization of normal matrices whose rank$-1$ numerical hulls are equal to their numerical range is given. Moreover, using the extreme points of the numerical range, the higher rank numerical hulls of matrices of the form $A_1 oplus i A_2$, where $A_1...
متن کاملHigher rank Einstein solvmanifolds
In this paper we study the structure of standard Einstein solvmanifolds of arbitrary rank. Also the validity of a variational method for finding standard Einstein solvmanifolds is proved.
متن کاملSeparation of Variables for Quantum Integrable Systems on Elliptic Curves
Abstract. We extend Sklyanin’s method of separation of variables to quantum integrable models associated to elliptic curves. After reviewing the differential case, the elliptic Gaudin model studied by Enriquez, Feigin and Rubtsov, we consider the difference case and find a class of transfer matrices whose eigenvalue problem can be solved by separation of variables. These transfer matrices are a...
متن کاملGENERALIZED HIGHER-RANK NUMERICAL RANGE
In this note, a generalization of higher rank numerical range isintroduced and some of its properties are investigated
متن کاملHigher rank numerical ranges of rectangular matrix polynomials
In this paper, the notion of rank-k numerical range of rectangular complex matrix polynomials are introduced. Some algebraic and geometrical properties are investigated. Moreover, for ϵ > 0; the notion of Birkhoff-James approximate orthogonality sets for ϵ-higher rank numerical ranges of rectangular matrix polynomials is also introduced and studied. The proposed denitions yield a natural genera...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SciPost Physics
سال: 2020
ISSN: 2542-4653
DOI: 10.21468/scipostphys.9.6.086